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Abstract. Color confinement is one of the central issues in QCD, and there are various interpretations of
this feature. In this paper we have adopted the interpretation that colored particles cannot be observed just
because colored states are unphysical in the sense of QB |quark〉 �= 0, QB |gluon〉 �= 0. It is shown that there
are two phases in QCD distinguished by different choices of the gauge parameter. In one phase, called the
“confinement phase,” color confinement is realized and gluons are no longer massless. In the other phase,
called the “deconfinement phase,” color confinement is not realized, but the gluons remain massless.

1 Introduction

Strong interactions of hadrons are considered to be gov-
erned by QCD, dealing with the interactions of quarks
and gluons. It is a gauge theory based on the color SU(3)
group, and a strongly interacting particle belongs to an ir-
reducible representation of this group; for instance, quarks
and gluons belong to the color triplet and octet represen-
tations, respectively. It so happens, however, that those
particles that belong to non-singlet representations are not
found in direct observations, and this property is referred
to as color confinement. Thus both quarks and gluons are
unobservable, and the only observable particles are color
singlet composite particles, called hadrons.
Experimentally, we can study the properties of quarks

and gluons only through hadrons. In order to study
hadron–hadron interactions theoretically we shall first il-
lustrate the problem by a similar one in QED. The in-
teraction between two charged particles is governed by
Coulomb’s law, but the interaction between two electri-
cally neutral particles is represented by the van der Waals
potential,

VvdW(r) ∝ r
−6 . (1)

This shows that the electric fields generated by neutral sys-
tems penetrate into the vacuum without any sharp cut-off.
In QCD we can elucidate the dynamical properties

of color-neutral hadrons with reference to dispersion re-
lations. For the scattering of hadrons, for instance, they
remain applicable provided that confinement excludes
quarks and gluons from the physical intermediate states
appearing in the unitarity conditions. This is precisely the
condition for color confinement. As a typical example, let
us consider nucleon–nucleon scattering; here the potential

is given by the pole contribution in the crossed channels.
The least massive hadron that can be exchanged between
them is the pion, and the resulting interaction is repre-
sented by the Yukawa potential,

VY(r) ∝
exp(−µr)

r
, (2)

where µ denotes the pion mass.
In comparison with the van der Waals force in QED we

recognize that the flux of the color gauge field emerging
from color singlet nucleons cannot penetrate into the con-
fining vacuum beyond a certain range, thereby leaving no
trace of long-range forces, and that the penetration depth
is given by the pion Compton wave length. Thus we recog-
nize a similarity between the Yukawamechanism for gener-
ating nuclear forces and the Meissner effect in the type II
superconductors. This similarity strongly suggests that the
vacuum allows for penetration of the flux of the color gauge
field generated by hadrons only by a finite length.
Thus we may point out two salient features of QCD

on the basis of the experimental properties of hadrons: (1)
color confinement, and (2) the finite penetration length of
the fluxes of the color gauge field.
The first one, color confinement, has been elucidated

in [1–4] and we shall concentrate ourselves on the second
problem in the present article. Actually, we interpret (2),
the finite penetration length, as evidence for massive glu-
ons, and we shall show that the realization of color con-
finement as interpreted in [1–4] automatically leads to the
absence of a massless pole in the gluon propagator. This is
the main subject of this paper.
In Sect. 2 we shall recapitulate the arguments for color

confinement based on BRS invariance [7] and asymptotic
freedom [5, 6]. In Sect. 3 we shall show that gluons are
no longer massless when color confinement is realized. In
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Sect. 4 we show that confinement is realized only in the
gauges in which Z−13 = 0 is realized. This is referred to as
the confinement phase. On the other hand, gluons remain
massless in the other gauges in which the above condition
is not met, and this case is referred to as the deconfinement
phase.

2 BRS invariance and color confinement

In this section we shall recapitulate the essence of the inter-
pretation of color confinement that has been developed in
a series of articles [1–4].
In a covariant quantization of gauge fields the intro-

duction of an indefinite metric is indispensable. Thus the
resulting state vector space V involves unphysical states of
indefinite metric and we have to find a criterion to select
physical states out of V. For this purpose we employ the
Lorentz condition in QED as a subsidiary condition, but
it is more involved in non-Abelian gauge theories. In what
follows we shall confine ourselves to QCD, and in order to
fix the notation we start from its Lagrangian density in the
metric gµν = diag(1,−1,−1,−1)

L= Linv+Lgf+LFP , (3)

where

Linv =−
1

4
FµνFµν +iψ(γ

µDµ−m)ψ , (4a)

Lgf =−A
µ∂µB+

α

2
BB , (4b)

LFP =−i∂
µcDµc (4c)

in the customary notation [1–4]. We have suppressed the
color and flavor indices in (4). The second Lagrangian
density (4b) is the gauge-fixing term in which α denotes
the gauge parameter and B the Nakanishi–Lautrup auxil-
iary field. The last one, (4c), is the Faddeev–Popov ghost
term, and the hermitian scalar fields c and c̄ are anticom-
muting and are called Faddeev–Popov (FP) ghost fields.
Local gauge invariance is respected only by the first term,
(4a), but not by the other two, (4b) and (4c), introduced
for the purpose of quantization. The total Lagrangian is in-
variant, however, under the global BRS transformations [7]
defined below.

BRS transformations

Let us consider an infinitesimal gauge transformation of
the gauge and quark fields and replace the infinitesimal
gauge function either by c or c. They define two kinds of
BRS transformations denoted by δ and δ, respectively.

δAµ =Dµc, δAµ =Dµc , (5)

δψ = ig(cT )ψ, δψ = ig(cT )ψ , (6)

where the matrix T is introduced in the covariant deriva-
tive of ψ by

Dµψ = (∂µ− igTAµ)ψ . (7)

For the auxiliary fields B, c and c̄ local gauge transform-
ations are not even defined, but their BRS transformations
can be introduced by requiring the invariance of the local
Lagrangian density, namely,

δL= δL= 0 . (8)

We shall not write them down explicitly, however, since
they are not relevant to the following arguments. Noether’s
theorem states that the BRS invariance of the Lagrangian
density amounts to two conserved BRS charges denoted by
QB and QB. They satisfy

δφ= i [QB, φ]∓ , δφ= i
[
QB, φ

]
∓
, (9)

where we choose the −(+) sign, when the field φ is of an
even (odd) power in the ghost fields c and c.
The equations of motion for the gauge field can be ex-

pressed with the help of the BRS transformations as [1–4]

∂µFµν + gJν = iδδAν , (10)

where Jν denotes the color current density and g the gauge
coupling constant. It is worth noting that all three terms in
(10) are divergenceless separately, in particular

∂ν(iδδAν) = 0 . (11)

The BRS charges are hermitian and nilpotent, for example,

Q†B =QB, Q
2
B = 0 . (12)

The nilpotency implies the introduction of an indefinite
metric, and the physical state |f〉 is defined by the con-
straint

QB|f〉= 0, |f〉 ∈ V . (13)

The set of physical states including the vacuum state |0〉
forms the physical subspace of V denoted by Vphys,

Vphys = {|f〉 :QB|f〉= 0, |f〉 ∈ V} . (14)

Then the S matrix is BRS invariant and satisfies

δS = i [QB, S] = 0 , (15)

so that the physical subspace Vphys is an invariant subspace
of the S matrix.
Furthermore, we introduce a subspace of V, called the

daughter subspace Vd, defined by

Vd = {|f〉 : |f〉=QB|g〉, |g〉 ∈ V} . (16)

Then because of the nilpotency of QB, Vd is a subspace of
Vphys,

Vd ⊂ Vphys , (17)

and we introduce the Hilbert spaceH by

H= Vphys/Vd . (18)
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We may compare Vphys, Vd and H to closed forms, exact
forms, and the cohomology in a Cartan algebra and (18)
may be called the BRS cohomology [3, 9, 10].
When the quark and gluon states are not physical, they

are unobservable and hence confined. Thus the problem of
color confinement reduces to demonstration of the condi-
tions

QB|quark〉 �= 0, QB|gluon〉 �= 0 . (19)

In a series of papers [1–4] it has been shown that the
criterion for color confinement takes the simple form

C = 0 , (20)

where the constant C is defined by

∂ν〈iδδ̄Aaν(x), A
b
j (y)〉= iδabC∂jδ

4(x−y) (j = 1, 2, 3) .
(21)

Here and in what follows 〈· · ·〉 denotes the vacuum expec-
tation value of the time-ordered product.
Furthermore, with the help of the renormalization

group and asymptotic freedom [1–4, 10], it has been shown
that the condition (20) follows from

Z−13 = 0 , (22)

where Z3 is the renormalization constant of the color gauge
field and this implies an indefinite metric for the spectral
function in the Lehmann representation for the gluon prop-
agator.
It has already been shown by Oehme and Zimmer-

mann [11] without reference to perturbation theory that
the above condition is satisfied in the Landau gauge, α= 0,
for Nf < 10 on the basis of RGE and asymptotic freedom.
It is true that the anomalous dimensions in RGE are eval-
uated in perturbation theory, but even then some results
are valid beyond perturbation theory thanks to asymptotic
freedom. Depending on the nature of the objects RGE pro-
vides results at different levels of precision, namely, (1)
approximate or semi-perturbative, or (2) exact.
For instance, evaluation of the coefficient functions in

the operator product expansion falls into the first cate-
gory, whereas examination of some global properties of the
theory falls into the second category. In fact, asymptotic
freedom itself follows from the negative beta function eval-
uated in the lowest order, but this concept of asymptotic
freedom is considered to be valid beyond perturbation the-
ory. Likewise, the condition (22) for color confinement falls
into the second category. This condition has been derived
from unbroken non-abelian gauge symmetry and asymp-
totic freedom related to the high-energy behavior of the
quark–gluon system. When Z−13 is expressed as the inte-
gral of the Lehmann spectral function of the gluon propa-
gator over the entire energy region, however, (22) indicates
a delicate balance of the contributions from all energy re-
gions including both ultraviolet and infrared. In this sense
this condition gives an indirect constraint on the infrared
behavior of this system. This should be contrasted with
Wilson’s area law in which the low-energy or long-distance

behavior plays a dominant role in explaining quark confine-
ment. It is also worth emphasizing that as a consequence
of the above condition all the particles belonging to non-
singlet representations of the color group are confined for
the same cause.

3 Pole structure of Green’s functions
and massive gluons

In this section we shall show that gluons turn out to be
massive when the condition for color confinement (20) is
satisfied. For this purpose we start form (10). This equa-
tion has been given in the unrenormalized form so that we
put the script (0) to the unrenormalized expressions and
rewrite (10) as

∂µF (0)µν + g0J
(0)
ν = iδδA

(0)
ν . (23)

Then we study its relationship to the renormalized version,
and in order to facilitate understanding of the nature of the
problem we start from its abelian version or QED, namely,

∂µF (0)µν + e0J
(0)
ν =−∂νB

(0) . (24)

The multiplicative renormalization of fields and parame-
ters relevant to this equation can be summarized as

A(0)µ = Z
1/2
3 Aµ, B

(0) = Z
−1/2
3 B J(0)ν = Jν , (25)

e0 = Z
−1/2
3 e, α0 = Z3α . (26)

The renormalized version of (24) is given by

∂µFµν + eJ̃ν =−∂νB , (27)

where

eJ̃ν = Z
−1
3 [eJν +(1−Z3)∂νB] . (28)

It so happens that both ∂µFµν and ∂νB are multiplica-
tively renormalized but with different multiplicative fac-
tors. This mismatch forces one to introduce operator mix-
ing for renormalization [12]. Since both ∂µFµν and ∂νB are
finite operators, so must be J̃ν too.
Essentially the same situation takes place in QCD, and

the renormalized version of (23) is given by

∂µF aµν + gJ̃
a
ν = iδδA

a
ν , (29)

where J̃aν is a linear combination of J
a
ν and iδδA

a
ν . The

space integral of Ja0 gives the color chargeQ
a:

Qa =

∫
d3xJa0 (x) , (30)

satisfying the commutation relations of the color SU(3)
algebra,

[
Qa, Qb

]
= ifabcQ

c . (31)
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With the help of (29) we can write down an equation for
two-point Green’s functions of the form

〈
∂λF aλµ(x), A

b
ν(y)
〉
+
〈
gJ̃aµ(x), A

b
ν(y)
〉
=
〈
iδδAaµ, A

b
ν(y)
〉
.

(32)

In what follows we shall study the structure of the Fourier
transforms of these Green’s functions.
Let Fµ andGν be vector fields and introduce

〈Fµ(x), Gν(y)〉=
−i

(2π)4

∫
d4keik(x−y)Tµν(k) , (33)

and the Fourier transform of 〈Fµ, Gν〉 is denoted by

Tµν(k) = FT〈Fµ, Gν〉 . (34)

Then Tµν can be expressed as a linear combination of two
covariants:

Tµν(k) =−
kµkν

k2+iε
T0(k

2)−

(
gµν −

kµkν

k2+iε

)
T1(k

2) .

(35)

Next we introduce two conditions.
Condition (1) is the assumption ∂µFµ = 0 and/or

∂µGµ = 0; then we get

T0(k
2) = T0, constant . (36)

Condition (2) is the assumption that in addition to the
condition (1) we haveQ|0〉= 〈0|Q= 0, where

Q=

∫
d3xF0(x) ; (37)

then we have

T0 = 0 . (38)

Indeed, when this condition is not met we have a broken
symmetry and the Nambu–Goldstone boson shows up in
the form T0 �= 0.
All three terms in (32) satisfy the condition (1) and

their Lehmann representations are given as follows. First,
by taking account of the antisymmetry between the sub-
scripts λ and µ, we find

FT〈Fλµ, Aν〉=−i(kλgµν −kµgλν)

×

[
R

k2+iε
+

∫
dm2

σ1(m
2)

k2−m2+iε

]
,

(39)

so that we obtain

FT
〈
∂λFλµ, Aν

〉

=−R
kµkν

k2− iε
+
(
k2gµν−kµkν

) ∫
dm2

σ1(m
2)

k2−m2+iε
.

(40)

Then, thanks to condition (2), we have in the absence of
operator mixing

FT
〈
gJ̃µ, Aν

〉
=−
(
k2gµν −kµkν

) ∫
dm2

σ2(m
2)

k2−m2+iε
.

(41)

Finally we have

FT
〈
iδδAµ, Aν

〉

=−C
kµkν

k2+iε
−
(
k2gµν−kµkν

) ∫
dm2

σ3(m
2)

k2−m2+iε
.

(42)

In what follows we shall study the properties of these
integral representations in more detail in QED and QCD.
In QED we have R= C = 1, so that

FT
〈
∂λFλµ, Aν

〉

=−
kµkν

k2+iε
+
(
k2gµν −kµkν

) ∫
dm2

σ(m2)

k2−m2+iε
,

(43)

and

FT〈−∂µB,Aν〉=−
kµkν

k2+iε
, (44)

so that we have

FT
〈
eJ̃µ, Aν

〉
=
(
k2gµν−kµkν

) ∫
dm2

σ(m2)

k2−m2+iε
.

(45)

The absence of the massless pole term in (45) reflects the
fact that the conservation of charge is not broken.
In QCD let us assume that the condition for color con-

finement (20) is satisfied; then we have

FT
〈
δδAµ, Aν

〉
=−
(
k2gµν −kµkν

) ∫
dm2

σ3(m
2)

k2−m2+iε
,

(46)

which justifies the absence of the operator mixing in (41).

Since J̃µ is a linear combination of Jµ and iδδAµ, we can
form a linear combination of (41) and (46) to find

FT
〈
gJ̃µ, Aν

〉
=−
(
k2gµν −kµkν

) ∫
dm2

σ̃2(m
2)

k2−m2+iε
,

(47)

where σ̃2 is a linear combination of σ2 and σ3. Then substi-
tuting (40), (46) and (47) for the Green’s functions in (32)
we find

R= 0 , (48)

or

FT
〈
∂λFλµ, Aν

〉
=
(
k2gµν −kµkν

) ∫
dm2

σ1(m
2)

k2−m2+iε
.

(49)
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Thus we find that there are no contributions to this two-
point function from massless gluon states, indicating the
absence of the massless gluon.
Then what would be the mechanism for generating the

finite gluon mass? A possible candidate is the gluon con-
densate defined by

〈
0|Aaµ(x)A

b
µ(x)|0

〉
= δabK �= 0 . (50)

A BRS invariant modification of (50) has been considered
by Kondo et al. to introduce an effective gluon mass [13].
For phenomenological implications of such a gluon conden-
sate as in (50), see e.g. [14]. In the Lagrangian density (4a)
we find a term quartic in the gauge field, and replacement
of a pair of gauge fields by their vacuum expectation values
(50) yields a mass term. By keeping only bilinear terms rel-
evant to the description of the free massive gluon field, we
find

Lg =
1

4
Aµνa A

a
µν −

1

2
m20A

µ
aA
a
µ , (51)

where

Aaµν = ∂µA
a
ν −∂νA

a
µ , (52)

m20 = g
2
0c2(G)K , (53)

where c2(SU(N)) = N . This gluon condensate does not
violate the color SU(3) symmetry nor the BRS invari-
ance provided that the mass term in (51) is dynamically
generated.

4 Equivalence class of gauges

In Sect. 2 we have introduced the QCD Lagrangian dens-
ity that depends on the gauge parameter α. We shall study
here how theoretical predictions depend on this parameter.
In perturbation theory all the observable quantities are

independent of the choice of the gauge parameter, but this
is not the case in the non-perturbative approach as we
shall see later in this section. Let us consider a class of La-
grangian densities {Lα} representing a gauge theory such
as QCD. Assume that all the members of this set are BRS
invariant,

δLα = 0 , (54)

and further that the difference between any two elements
of this set is exact so that it can be expressed as the BRS
transform of a certain operatorM,

∆L= LII−LI = δM , (55)

then this set {Lα} is called an equivalence class of gauges
(ECG) in a loose sense. We shall show later, however,
that we have to introduce an additional condition for iden-
tifying the element of an ECG in the non-perturbative
approach.

Lagrangian densities corresponding to different choices
of α in (4) belong to the same class in perturbation theory,
since we have

∆L=
1

2
(∆α)BB =−

i

2
(∆α)δ(cB) , (56)

or

M=−
i

2
(∆α)(cB) . (57)

Now we introduce Green’s functions in two gauges of the
same ECG; then they are related to one another through
the Gell-Mann–Low relation [15]:

〈A(x1)B(x2) · · ·〉II = 〈A(x1)B(x2) · · · exp(i∆S)〉I ,
(58)

where A, B, · · · are local operators, and

∆S =

∫
d4x∆L= δ

∫
d4xM . (59)

In particular, when all the local operators are BRS invari-
ant, namely

δA= δB = · · ·= 0 , (60)

we obtain

〈A(x1)B(x2) · · ·〉II = 〈A(x1)B(x2) · · ·〉I , (61)

by expanding the r.h.s. of (58) in powers of ∆S. Since A,
B, · · · are closed and ∆S is exact, we have

〈A,B, · · · , (∆S)n〉= 0 . (62)

Since we are exploiting a series expansion in powers of ∆S,
the proof of (61) is based on the assumed convergence of
this series.
In what follows we shall restrict ourselves to the La-

grangian density (4) and assume that all the quark masses
have certain fixed values. Then a theory is characterized by
α and g2. We shall plot (α, g2) on a two-dimensional half-
plane

−∞< α <∞, g2 > 0 ; (63)

then each point on this half-plane corresponds to one the-
ory. Now we introduce the renormalization group (RG),
with the generator of this RG given by [10]

D = µ
∂

∂µ
+β(g)

∂

∂g
−2αγV (g, α)

∂

∂α
, (64)

where µ denotes the renormalization point with dimension
of mass and γV is the anomalous dimension of the color
gauge field. Since we have discussed applications of RG to
Green’s functions elsewhere [3, 10], we shall confine our-
selves to the study of the running parameters, defined by

g(ρ) = exp(ρD)g ,

α(ρ) = exp(ρD)α ,

µ(ρ) = exp(ρD)µ= eρµ , (65)
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where ρ denotes the parameter of RG. In what follows we
shall concentrate on g(ρ) and α(ρ).
When we increase ρ from 0 to∞, the point (α(ρ), g(ρ))

moves along a line called the RG flow line (RGFL). Two
theories corresponding to two points on the same RGFL
are completely equivalent and physically identical as has
been clarified in the applications of RG to Green’s func-
tions [3, 10]. The asymptotic limits of these running param-
eters are denoted by

ḡ(∞) = g∞, ᾱ(∞) = α∞ , (66)

and such a point represents a sink of the RGFL. The
asymptotic freedom that has been assumed throughout
this article is characterized by

g∞ = 0 . (67)

It should be emphasized that α∞ can assume only three
alternative values depending on the choice of the starting
point of the RGFL, namely

α∞ =−∞ , 0 , α0 , (68)

where α0 depends only on the number of quark flavors Nf
in QCD:

α0 =−
1

3
(13−

4

3
Nf ) . (69)

Without loss of generality we shall restrict ourselves to the
following case:

α0 > 0, or Nf < 10 . (70)

The value of α∞ depends only on the initial value of α,
namely

α∞ =

⎧
⎨

⎩

α0, for α > 0 ,
0, for α= 0 ,
−∞, for α < 0 .

(71)

We recall the arguments on the ECG. Equivalence of
the two gauges characterized by (α1, g

2
1) and (α2, g

2
2) was

based on a series expansion in powers of ∆α, and when
they belong to the same ECG so do (α1, g

2
1) and (α2, g

2
2).

The equivalence of the latter is based on the series ex-
pansion in powers of ∆α(ρ). Now assume that α1 < 0 and
α2 > 0; however small the difference ∆α = α2−α1 might
be, α1 tends to−∞ and α2 to α0 so that ∆α(ρ) tends to∞.
This fact casts doubt on the convergence of the power se-
ries and we may conclude that these two points do not
belong to the same ECG. Thus it is very likely that we have
two sets of ECG defined on the two-dimensional parameter
half-plane,

D(−∞) =
{
(α, g2) : α < 0, g2 > 0

}
, (72)

D(α0) =
{
(α, g2) : α > 0, g2 > 0

}
. (73)

Both of them are two-dimensional domains, but in addition
we have a one-dimensional line which forms the border be-
tween them, namely,

L(0) =
{
(α, g2) : α= 0, g2 > 0

}
. (74)

Indeed, ᾱ(ρ) shows a discontinuity at α = 0 when ρ is cho-
sen sufficiently large as is the case for α∞. Then with the
help of (4.9) of [4], i.e.

G(pi; g, α, µ) = exp

[∫ ρ

0

dρ′γ̄(ρ′)

]
G (pi; ḡ(ρ), ᾱ(ρ), µ̄(ρ)) ,

where γ denotes the anomalous dimension of the Green’s
function in question, we may conclude that the Green func-
tions also develop a discontinuity at α = 0. This discon-
tinuity is certainly reflected in the Green functions, for
instance, in the form of a residue of the massless pole of the
gluon propagator studied in the preceding section.
In this connection it is also important to recognize that

particle masses defined as the pole positions of propagators
are independent of ρ and thus are RG invariant as is clear
from the above relationship.
Thus it seems likely that we have three ECG specified

by the value of α∞.
It has been shown already that the renormalization

constant Z3 of the color gauge field is given by [3, 10]

Z−13 =
α

α∞
. (75)

This constant is related to C in (21) through the for-
mula [1–4]

C(ρ) = ā(ρ)−2

∫ ∞

ρ

dρ′
(
γ̄V (ρ

′)+ γ̄FP(ρ
′)
)
ā(ρ′)

× exp

[

−2

∫ ρ′

ρ

dρ′′γ̄FP(ρ
′′)

]

, (76)

where γFD is the anomalous dimension of the Faddeev–
Popov ghost fields and a(ρ) is given by

a(ρ) =
α(ρ)

α∞
. (77)

The validity of (76) has been tested in QEDwith the result
that it reproduces C = 1 correctly and the lack of asymp-
totic freedom in QED does not allow C to vanish. Hence
charge confinement does not take place in QED. Therefore
we have

Z−13 =

{
0, in D(−∞) and L(0) ,
α
α0
, in D(α0) .

(78)

The ratio (75) is indefinite for α∞ = 0; however, Z
−1
3

has been evaluated directly by Oehme and Zimmer-
mann [11] and was shown to be equal to zero.
Combining (76) and (78) we find

C = 0, inD(−∞) andL(0) ,

C �= 0, inD(α0) . (79)

This amounts to the conclusion that gluons are massive in
the confinement phase,D(−∞) and L(0), whereas they re-
main massless in the deconfinement phase D(α0).
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The case of α0 < 0 is slightly more complicated, but es-
sential features such as the existence of two phases are the
same.

5 Conclusions

Theories described by the Lagrangian density (3) corres-
ponding to different choices of the gauge parameter α be-
long to the same ECG in perturbation theory. This class is
split into three, however, in a non-perturbative approach
depending on their convergence properties. Anomalous di-
mensions in QCD are expanded in double power series in
g2 and αg2 [4], and the critical parameters governing the
convergence of the expansion are the asymptotic values of
g2, α, and αg2. The last one cannot be evaluated exactly,
but it is still possible to judge whether it is equal to zero or
non-zero.
In order to clarify the differences among the three

classes in the convergence properties we shall tabulate
them in what follows:
In Case (1) we have α0 > 0 or Nf < 10.

region (αg2)∞ Z−13 confinement gluon mass

D(−∞): �= 0 0 yes �= 0
D(0) or L(0): 0 0 yes �= 0
D(α0) 0 �= 0, ∞ no 0

In this case D(0) or L(0) is the straight line α= 0 and
forms the border between D(−∞) and D(α0).
In Case (2) we have α0 < 0 or 10≤Nf ≤ 16.

region (αg2)∞ Z−13 confinement gluon mass

D(−∞): �= 0 0 yes �= 0
D(α0) or L(α0): 0 �= 0,∞ no 0
D(0) 0 ∞ no 0

In this case D(α0) or L(α0) is a RGFL and forms the
border between D(−∞) and D(0).
Our naive belief in the independence of physics on the

gauge parameter is no longer justified, but instead three

phases show up. There are confinement and deconfinement
phases, and in the former gluons turn out to be massive and
in the latter they remain massless.
Color confinement is one of the central issues in QCD,

and there are various interpretations of this feature. In this
paper we have adopted the interpretation that colored par-
ticles are not subject to observation just because colored
states are unphysical in the sense of (19). Then the emer-
gence of massive gluons is an inevitable consequence of this
interpretation.
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